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Figure 9. The spatial growth rate of linear disturbances predicted by the 
Orr-Sommerfeld equation (xPA/c=0.55).  (a) x/c=0.6 and (b) x/c=0.9.  
Chain lines represent the frequency of the trailing-edge noise. 

 

actuator was operated, on the other hand, the growth rate 
decreased drastically down to about one-third of that without 
actuator operation at x/c=0.6, and the linear disturbance at tonal 
noise frequency became stable at x/c=0.9.   

 

Conclusion 

Suppression control of noise generation at an airfoil trailing edge 
was conducted by using a plasma actuator for a NACA0012 
airfoil at an angle of attack of 2°, at a chord Reynolds number Re 
= 2.2×105, where the generation of tonal trailing-edge noise was 
governed by the acoustic feedback loop mechanism operating on 
the pressure surface.  To minimize possible interferences of 
electrode installation to the boundary-layer stability, we used an 
actuator with a flush-mounted electrode configuration.  The 
effective suppression of the trailing-edge noise was achieved 
when the plasma actuator was operated at 55%-60% chord 
location.  In this effective condition, the magnitude of actuator 
induced near wall flow velocity was at most 4% of the uniform 
flow velocity.  It was also demonstrated that such weak surface 
flow stabilized the downstream boundary layer significantly, 
leading to the complete suppression of the trailing-edge noise.   
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